Design Space Reduction in Optimization Using Generative Topographic Mapping

نویسندگان

  • Asha Viswanath
  • Alexander I.J. Forrester
  • Andy J. Keane
چکیده

1. Abstract Dimension reduction in design optimization is an extensively researched area. The need arises in design problems dealing with very high dimensions, which increase the computational burden of the design process because the sample space required for the design search varies exponentially with the dimensions. This work describes the application of a latent variable method called Generative Topographic Mapping (GTM) in dimension reduction of a data set by transformation into a low-dimensional latent space. The attraction it presents is that the variables are not removed, but only transformed and hence there is no risk of missing out on information relating to all the variables. The method has been tested on the Branin test function initially and then on an aircraft wing weight problem. Ongoing work involves finding a suitable update strategy for adding infill points to the trained GTM in order to converge to the global optimum effectively. Three update methods tested on GTM so far are discussed. 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Linear Generative Topographic Mapping

We propose a method for non-linear data projection that combines Generative Topographic Mapping and Coordinated PCA. We extend the Generative Topographic Mapping by using more complex nodes in the network: each node provides a linear map between the data space and the latent space. The location of a node in the data space is given by a smooth nonlinear function of its location in the latent spa...

متن کامل

A Sparse Grid Based Generative Topographic Mapping for the Dimensionality Reduction of High-Dimensional Data

Most high-dimensional data exhibit some correlation such that data points are not distributed uniformly in the data space but lie approximately on a lowerdimensional manifold. A major problem in many data-mining applications is the detection of such a manifold from given data, if present at all. The generative topographic mapping (GTM) finds a lower-dimensional parameterization for the data and...

متن کامل

Kernel generative topographic mapping

A kernel version of Generative Topographic Mapping, a model of the manifold learning family, is defined in this paper. Its ability to adequately model non-i.i.d. data is illustrated in a problem concerning the identification of protein subfamilies from protein sequences.

متن کامل

Compositional Generative Mapping for Tree-Structured Data - Part II: Topographic Projection Model

We introduce GTM-SD (Generative Topographic Mapping for Structured Data), which is the first compositional generative model for topographic mapping of tree-structured data. GTM-SD exploits a scalable bottom-up hidden-tree Markov model that was introduced in Part I of this paper to achieve a recursive topographic mapping of hierarchical information. The proposed model allows efficient exploitati...

متن کامل

Modelling the Population Distribution in Multi-objective Optimization by Generative Topographic Mapping

Under mild conditions, the Pareto set of a continuous multi-objective optimization problem exhibits certain regularity. We have recently advocated taking into consideration such regularity in designing multi-objective evolutionary algorithms. Following our previous work on using Local Principal Component Analysis for capturing the regularity, this paper presents a new approach for acquiring and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009